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Summary. We discuss a generalization of the classical Kolmogorov—Smirnov test,
which is suitable to analyse random samples defined in two or three dimensions.
This test provides some improvements with respect to an earlier version proposed
by Peacock. In particular: (i) it is faster, by a factor equal to the sample size, n,
and then usable to analyse quite sizeable samples; (ii) it fully takes into account
the dependence of the test statistics on the degree of correlation of data points and
on the sample size; (iii) it allows for a generalization to the three-dimensional case
which is still viable as regards computing time. Supported by a large number of
Monte Carlo simulations, we are ensured that this test is sufficiently
distribution-free for any practical purposes. We also give a simple analytic’
expression to make easier the calculation of the critical values of the test
probability distribution.

Toillustrate how the test works, we use it to analyse models of the cosmological
evolution of X-ray selected active galactic nuclei and we show that it is a much
more sensitive goodness-of-fit test than the y2.

1 Introduction

It is rather common in astronomy to deal with samples of data points defined in two or more
dimensions and limited by poor statistics, in spite of the big observational efforts involved.
Binning these data and analysing them with a y? technique or deriving the marginal distributions
are known to be quite inefficient procedures. Recently, Peacock (1983) has proposed a
two-dimensional version of the classical Koimogorov—Smirnov (KS) test which, though not of
general validity from a formal point of view, may be suitable in two-dimensional cases. The high
efficiency of this test follows from the fact that full use is made of the information from each
individual data point. However, a potentially serious limitation of this test arises from the
over-long computation times required, that often makes its application cumbersome.

Here we propose a generalization of the Kolmogorov—Smirnov test based on a slightly
different procedure which is faster (by a factor equal to the sample size, n) than the previous one,
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yet maintains the same power, or even sometimes improves on it. This approach fully accounts for
the dependence of the test statistics on the degree of correlation of data points and on the sample
size n. Finally, we are also allowed to obtain a generalization to the three-dimensional case whose
application implies still viable computing times.

Sections 2 and 3 are in particular devoted to the description of the new test. In Section 4 we
present a simple generalization to the three-dimensional case. In Section 5 we analyse the two
sample test for both two-dimensional and three-dimensional samples. In Section 6 we discuss
some properties of the test, in particular its power and consistency. Section 7 contains the
conclusions.

2 The two-dimensional KS test for a uniform uncorrelated distribution
2.1 THE PEACOCK’S TEST

As is well known, the classical one-dimensional Kolmogorov-Smirnov test makes use of the
probability distribution of the quantity Dg, defined as the largest absolute difference between
the cumulative frequency distributions of the parent population and that of an n-point sample
extracted from it. Since Dgs turns out to be approximately proportional to 1/\/n, one usually
refers to the probability distribution of the quantity Z,,EDKS\/n. For low n, the values of Z,
corresponding to a given significance level SL (let’s call them Z,, ;) slightly increase with n. For
large n, the integral probability distribution P(>Z,) has the asymptotic expression (see Kendall
& Stuart 1979)

P(>Z,)=2 i (—DFexp (-2k%Z,)
k=1

which is satisfactory for n=80.

The one-dimensional nature of the test implies that it does not depend in any way on the shape
of the parent distribution. In particular, the Z, distribution does not depend on which one of the
two ways to cumulate the data on the axis is chosen.

Unfortunately, in the case of distributions in more than one dimension, the procedure to
cumulate the information on the plane is not unequivocal. For data in two dimensions, the
procedure devised by Peacock (1983) makes use of the maximum absolute difference Dggs
between the observed and predicted normalized cumulative distributions, when all four possible
ways to cumulate data following the directions of the coordinate axes are considered. In practice,
the Peacock’s test requires that the cumulative distributions of both the observational data and
the model function should be calculated in all 4n? quadrants of the plane defined by:

(x<X;,y<Y)), (x<X;,y>Y)), (x>X,,y<Y)), x>X;,y>Y)) @(G,j=1,...,n) 1)

for all possible combinations of the indices i and j. It is obvious that, unless n is small or the model
distribution particularly simple to integrate, the application of the test is rather expensive in terms
of computer time. For example, the analysis of a sample of n =100 data points on the plane would
require 3n*=30000 double integrations of the model distribution. Of course, the use of
two-dimensional interpolating routines for the cumulative distributions would alleviate the
problem.

2.2 A NEW VERSION OF THE TWO-DIMENSIONAL KS TEST

In the following we propose a somewhat different generalization of the one-dimensional
Kolmogorov—Smirnov test that has the advantage of a simpler and faster application than the
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previous one. To this end, we define a statistic which, instead of considering all n? points (X,
Y;, i, j=1, n) of the plane as suitable places to cumulate data points and the model distribution,
involves only those n points where a detection is found. We will see in Section 6 that this simplified
procedure does not compromise the power and consistency of the test. Operationally, for any
data point of coordinates (X;, Y;) we sum up observed data and predictions only in the four
quadrants of the plane defined by

(x<X;,y<Y;), (x<X,y>Y)), (x>X,y<Y;), (x>X;y>Y)) (i=1,...,n). ()

Then we calculate the largest absolute difference of these two quantities (both normalized to 1)
within all four quadrants and define Dggg as the largest of these differences when all data points
are considered. As in the one-dimensional case, we define Z,= DBKS\/n.

We have studied the statistics of Z, by means of a Monte Carlo procedure using a uniform
distribution within a square as the parent population (see model 1 of Peacock) and extending our
analysis to comprise cases with n=5000. For any given n, we have produced a large number of
simulations, recording for each of them the corresponding Z,, in order to construct the integral
probability distribution P(>Z,) with sufficient accuracy. Then we have calculated the critical
values Z,, g corresponding to each relevant confidence level, SL.

The number of simulations produced for each given n varies from a maximum of 100000 (for
n<50) to a minimum of 500 (for n=5000). Fig. 1 (see also Table A1) shows the critical values
Z, s resulting from these simulations, as functions of n, together with the polynomial fit that will
be described in Appendix A. We notice that for all the values of SL the curves increase with
increasing n and show clear signs of convergence only for n>2000 (that is approximately the
square of the value of n at which the one-dimensional case converges).

Fig. 2 shows the dependence of the critical values Z, g on the significance level SL, for some
values of the sample size n.

1 i 2 ’ 3 4
log n

Figure 1. Critical values of the statistic Z, as function of the sample size, , and for values of the confidence level SL

varying from 30 to 99 per cent (these data are also reported in Table A1). Recall that SL=1- P(>Z,). The model

used is a uniform uncorrelated distribution on the plane. Curves are a third-order polynomial fit to all our Z, s data,

as described in Appendix A. Data for n=5000 are subjected to a considerable noise due to the limited number of
simulations (see Table A1).
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Figure 2. Critical values of Z,, as function of the significance level SL for n=5, 10, 20, 50, 200, 1000, 5000. The model

is a uniform uncorrelated distribution (see also caption to Fig. 1).

3 Making the two-dimensional KS test distribution-free

The procedure to calculate Z, described in Section 2.2 is such that, as the correlation of data
points in the plane increases, the quadrants which predominantly contribute to the computation
of Z, tend to reduce to 2. For a perfect linear correlation this is rigorously verified and the
distribution P(>Z,) has to reduce to that of the one-dimensional case.

Following this line of reasoning, we have extended our analysis to include parent distributions
with correlation coefficients varying from 0 to 1. We have analysed, in particular, three schematic
cases of uniform distributions defined within domains of the plane such that, varying some
parameter A, the correlation coefficient (CC) spans continuously the range 0-1 (see Fig. 3). In

L
-
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T
l” l“lh..

A = cosa

q

c)

Figure 3. Models of uniform distributions with varying correlation coefficient. The side of the square was normalized
to one. (&) The limits of A— 0 and A— 1 correspond to CC=1 and CC=0, respectively. (b) We have varied both the
angle a and the width of the strip. (¢) A—0 and A—1 give CC=0 and CC=0,5, respectively.
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Figure 4. Critical values of Z, as a function of the correlation coefficient CC for n=>50. Simulations were based on
model (a) of Fig. 3. However, we have found no difference wth the results of any other model for a given value of CC.

addition, to cover a wider range of possibilities, we have also considered more pathological
distributions such as those used by Peacock (1983, see his fig. 3) to study the distribution-free
nature of his test.

For any given CC value, we have found no differences, within the statistical uncertainties,
between the P(> Z,) distributions corresponding to the above different cases. On the contrary, a
marked dependence on the correlation coefficient is evident, at least for values of CC between 0.5
and 1 (see Fig. 4). In particular, the models of cases (a) and (b) in our Fig. 3 for CC— 1 give values
of Z, s equal to those of the one-dimensional KS test.
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Figure 5. Comparison between the critical values of Z,, obtained by sampling a fully correlated (continuous lines) and

anuncorrelated (dashed lines) distribution. Z,, 5; values of the perfectly correlated case are not distinguishable from
those of the classical one-dimensional test.
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In Fig. 5 the perfectly correlated case is compared to the perfectly uncorrelated one, while Fig.
6 shows the results of the simulations for intermediate values of CC (0.6, 0.7, 0.8, 0.9). Further
details are given in Appendix A.

We have also considered some cases of non-uniform distributions. In particular, we have
analysed bivariate normal distributions having correlation coefficients varying from 0 upwards,
and distributions for which there is a gradient of the density along arbitrary directions of the
plane. Again, in all such cases the statistics of Z,,, turned out to be dependent on the parameter
CC only. In conclusion, once the dependence of P(>Z,) on the CCis conveniently described, we
may be confident that our test is sufficiently distribution-free for any practical applications.

Thus, if we want to test a statistical hypothesis concerning a given sample of data points on the
plane, we must simply calculate the quantity Z,, determine the correlation coefficient of the

1.5

Z CC:=6 CC=.7
n'sL 2 4 i i

1.5

cc =.9 cc = -8

iy I I 4 < i 4

4? 2 1 2 3
log n

Figure 6. Critical values of Z, for models with different values of the correlation coefficient CC. (a) CC=0.6. (b)
CC=0.7. (c) CC=0.8. (d) CC=0.9.

@
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model distribution, and derive the corresponding significance level at which the hypothesis can be
rejected using the tables or figures that refer to the value of CC.

To make the comparison between the measured Z, and the test critical values Z,, g easier, we
have attempted to represent these latter values as a function of the sample size n, the correlation
coefficient CC and the significance level SL, by means of a polynomial expansion of the form

Z, sL= 2 2 2 agu'v'wk, (3)
T Tk

where u, v, w are simple functions of n, CC and SL. In Appendix A we show that a third-order
polynomial is a good enough representation of the data, and it can be reliably used to derive Z,, 5
for any value of n, CC and SL.

Figs 1, 2, 4 and 6 compare the results of this fitting procedure with some sets of dataon Z,, g; .
For high values of the significance level, SL, the fit turned out to be so good that we were tempted
to extrapolate equation (3) to SL>99 per cent, where in general our data are not reliable due to
the finite number of simulations (values of Z, g; with SL>99 per cent are omitted in the
Appendix). For a few values of n (n=5, 30, 50 and 100) we have verified that this extrapolation
gives acceptable fits to Z, g1 up to SL=99.7 per cent, that corresponds to the classical 3o level.

4 The KS test for three-dimensional samples

Since the computation times needed for the application of the two-dimensional KS test described
in the previous sections are fairly moderate, it is now tempting to extend the analysis to the
three-dimensional case. Likewise the two-dimensional case, we define anew Z,,_;p statistic as the
absolute maximum difference (multiplied by \/n) between the observed and predicted normalized
integral distributions cumulated within the eight volumes of the three-dimensional space defined
for each data point (X}, Y;, Z;) by

(x<Xi,y<Y,-, Z<Zi), eley (x>Xi,y>Yi,z>Zi) (z=1,,n) (4)

To study the probability distribution of Z, ;p we have carried out a set of Monte Carlo
simulations using in particular as parent populations a three-dimensional uniform distribution
and a trivariate Gaussian with o,,=0,,=0,,=1. A complication here comes from the fact that
three parameters (0., =0,/ 0y a;y, Oxz> Oy) are required to completely specify the correlation
structure of the model distribution. However, we have found that unless two or more variables
are very highly correlated just one parameter is enough to specify, as in the two-dimensional case,
the probability distribution of Z, ;p. We found that the average ¢ of the three correlation
coefficients g,,, 0., and g,, is suitable to this purpose.

We were able to reconstruct with sufficient accuracy the Z,, ;p statistics up to the value of the
sample size n=>500, for all the relevant values of ¢ (recall that the computation of Z, in the
three-dimensional case requires only 7» integrations of the model distribution). Fig. 7 shows the
critical values (for SL=80 per cent) of Z,, as a function of the sample size n for some values of g,
compared with the curves corresponding to the degenerate two-dimensional (¢,,=1) and
one-dimensional (0., =0.,=0,.=1) cases.

As a check of consistency, we have found that, for the limit that two or all the three variables
are perfectly correlated, the probability distribution of Z, ;p coincides with the probability
distributions of the two-dimensional or one-dimensional cases, respectively.

To verify to what extent the three-dimensional test is distribution-free, we have simulated
samplings from a number of quite different parent distributions. A convenient way to do that was
to place at arbitrary positions in the three-dimensional space a fairly large number of cubes (=10
to 30) of different sizes and constant density. The cube was chosen to facilitate the computation of

6
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Figure 7. Critical values of the three-dimensional KS test statistics for different values of the average correlation
coefficient ¢, compared with those of the two- and one-dimensional cases. The heavy lines correspond to the three-,
two- and one-dimensional uncorrelated cases. The light dashed lines refer to the three-dimensional statistics with
©0=0.6, 0.7, 0.8 and 0.9. The two- and three-dimensional cases are the limiting cases of the three-dimensional
statistics at increasing degree of correlation of the samples.

the predicted cumulative distributions. By changing the position and size of each cube, one can
easily simulate a number of different distributions including many pathological cases also. It
turned out that indeed the key parameter of the statistics is the average correlation coefficient .
We did not find departures larger than 5 per cent for the critical values Z, ;p, unless the
correlation coefficient connecting two of the three variables is higher than 0.95: this is the only
case in which the above three-dimensional procedure cannot be applied. Note, however, that in
this case the two-dimensional (or one-dimensional) statistics can be used.

In Appendix B we report the relevant information needed for the application of the
three-dimensional KS test.

5 The two-sample test

The generalization of the two-sample one-dimensional KS test to our multidimensional case is not
obvious. The construction of a self-consistent two-sample test for two-dimensional or
three-dimensional samples has to satisfy the following three conditions (see also Peacock 1983):
(1) the test has to be symmetric with respect to samples 1 and 2 (of sizes n; and n,); (ii) it must
reduce to the one-sample case for n;— % or n,— ; (iii) its probability distribution should be
easily recovered from that of the one-sample tests. Relying again on a set of Monte Carlo
simulations we have found that, if we calculate the maximum absolute difference as the average
Dgs of the two values of Dpgs obtained by cumulating data according to both samples 1 and 2,
then the probability distribution P(>Z) of the statistic,

Z=Dggs\mny/(ny+ny), (5)

is indistinguishable from the P(>Z,) distribution of the one-sample case, where
n=nn,/(n+ny).
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Therefore, if we need to compare two independent samples defined in two-dimensional or
three-dimensional spaces, we can calculate Z as in equation (5) and then derive the significance
levels by using as critical values of Z those already obtained for the one-sample cases [with
n=nn,/(n;+n,)] (see Appendices A and B). The only assumption here is that the correlation
coefficients CC of the two samples must not be substantially different. However, using the
probability distribution of the CC values of a random sample, and using the particular
dependence of Z, s on CC (see Fig. 4), we can show that this uncertainty implies errors on the
final determination of SL not larger than the statistical uncertainties (=5 per cent) due to the
limited number of our simulations.

6 Discussion
6.1 COMPARISON BETWEEN OUR TWO-DIMENSIONAL KS TEST AND PEACOCK’S (1983) VERSION

While for the application of our two-dimensional KS test, as discussed in Section 2, it is sufficient
to compute the four observed and predicted cumulative distributions at any detected points of
coordinates (X;, Y;, i=1, n), Peacock’s (1983) version requires that these should be computed for
each of the n? points of coordinates (X, Y},i,j=1,n). To check whether our simplified
procedure is causing any loss of information, we have carried out a set of simulations applying
both our test and Peacock’s test to several different samples of data points. We have still used a
bivariate Gaussian model with varying standard deviation and correlation coefficients. The
results show that, within the statistical uncertainties, for uncorrelated distributions there is no
difference between the power of the two tests. On the contrary, when the correlation coefficient
of the model distribution approaches unity (CC>0.9), the power of our two-dimensional test
tends to be higher. This is not unexpected, however, if we consider that Peacock’s test neglects a
residual (weak) dependence on the correlation of the model distribution.

From a more general point of view, since our statistic makes use of the differences between the
cumulative distributions calculated only at the observed points, one might question the ability of
our test to detect, even in the limit n— o, a difference between any two arbitrary distributions,
that is to say its consistency.* We measure the consistency of the test as follows. In the case where
the domains of the model distributions and of the sampled points do not coincide, we must always
find at least one data point, for example at the boundary between the two domains, for which the
difference between the cumulative distributions (for at least one of the four rankings) is different
from zero. As n— o, Dggs#0 implies Z,— » and then SL— 1. If instead these two domains
coincide it is also obvious that, as n— o, the sampled points tend to cover all the domain and any
difference between model and parent distributions will be reflected in a difference between the
cumulative distributions relative to at least one of the data points and at least one ranking.
Further evidence of consistency will be discussed in Section 6.2.

6.2 PROPERTIES OF THE TWO-DIMENSIONAL KS TEST

Kendall & Stuart (1967) report some general results concerning the power of the one-dimensional
KS test compared with that of the »? statistics. They conclude that KS is a very much more
powerful test than y?, even for sample sizes as large as n=200. We have no general procedure by
which to compare the power of the two-dimensional KS test with that of other goodness-of-fit
tests, nor have we done thorough runs of simulations to study it. However, some impression can
be gained by working out specific examples.

*Test consistency may also be defined as the ability to reject, as n— %, a wrong hypothesis with probability — 1.
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The problem under study concerns the cosmological evolution of X-ray selected active galactic
nuclei. Two samples exist with complete flux (S,) and redshift (z) information, with a total of 78
X-ray sources which fall into two nearby domains of the (S,, z) plane. We have used these data to
test a couple of models of evolution, with two different values of the cosmological deceleration
parameter (go=0.1 and ¢g,=0.5). Both models allow only sources with X-ray luminosity larger
than 10*ergs™! (2-10keV band) to undergo luminosity evolution (details can be found in
Danese et al. 1985). A y? technique is applied to the binned marginal distributions on the S, and z
axes, as opposed to our two-dimensional KS technique that makes use of the information from
each of 78 data points in the (S,, z) plane.

The model with go=0.1 gives a total y?=20.32 with 22 data bins and five free parameters (thus
we must compare this quantity with the critical values of a y* probability distribution with 17
degrees of freedom). This implies that the model can be rejected only at the 75 per cent
confidence level. The same model has Z7;3=1.385 and a correlation coefficient CC=0.73: by using
the interpolating expression of equation (Al) we can reject the ‘model at the =90 per cent
confidence level.

The model with g,=0.5 gives y*=20.35 with the same number of degrees of freedom and can
again be rejected only with 75 per cent confidence. In this case Z;3=1.64 and CC=0.74, so that
this model can be rejected at better than 98 per cent confidence by the two-dimensional KS test.

We have also investigated the properties of the two-dimensional KS as a parameter point
estimator and compared it with the widely used maximum likelihood method. We have simulated
arepeated sampling from a bivariate normal distribution: for each simulation we have considered
as known parameters the means x=0 and y=0 and estimated the standard deviation o by
minimizing Z, and maximizing the likelihood. In addition, we have also kept as a known
parameter o and estimated x=Yy. Then we have derived the corresponding distributions of the
estimates. This analysis has shown that the variance of the two-dimensional KS estimator is
usually larger than that of the ML, in spite of a slightly lower bias. In particular, in the case of the
estimate of the parameter o, the ratio of the variance of the two-dimensional KS estimator to that
of the ML was found to be larger for low values of the sample size n and to approach unity only for
high n: for n =20 we find oxs/omp =2.24, for n=50 o/ 0oy =2.1 and for n =500 oxs/oNy =1.2. If
we add that usually the two-dimensional KS test requires a larger computation time than the ML
[3nintegrations of the density function f(x, y), instead of n simple determinations of f(x, y)], we
must conclude that the Maximum Likelihood is to be preferred to the two-dimensional KS as a
point estimator.

From the above discussion, we may also get some further indications concerning the
consistency of the test. According to Kendall & Stuart (1979), if a test of goodness-of-fit
concerning the value of a parameter & ‘is based on a statistic which is a consistent estimator of 4, it
is immediately obvious that the test will be consistent too’. On the other hand, a consistent
estimator will be characterized by a variance converging to zero as n— . We have seen that, in all
the cases explored, the variance of the two-dimensional KSis converging at least as quickly as that
of the ML estimator. Since the latter is known to be a consistent estimator, we may infer from that
the consistency of the two-dimensional KS at least in all the cases we have directly studied.

We finally mention that the property of the test of being distribution-free allows us to set
confidence limits to a distribution as a whole (see Kendall & Stuart 1979, for a similar proposal
concerning the one-dimensional test). If dg;=2, 1./ \/n is the critical value of Dgks at the
significance level SL and for a sample of size n, we can set up a band of width +dg around the
sample distribution, such that it must contain with probability SL the true parent distribution. If
we use as reference value of CC that of the sample distribution (but more conservative values can
also be used), again, following a reasoning similar to that of Section 5, we can show that the
uncertainty on CC cannot invalidate the result.
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6.3 THE THREE-DIMENSIONAL KS VERSUS THE TWO-DIMENSIONAL KS TEST

We have also briefly investigated the power of the three-dimensional KS test, compared to that of
the two-dimensional KS. Several random samples with different sizes, n, were extracted from a
trivariate Gaussian with 9,,=9¢,,=0,,=0.5 and analysed on the basis of an uncorrelated
(0xy=0x.=0y,=0) model. For each value of n we have simulated 30 random samples recording
the significance levels at which that modelis rejected by the three-dimensional KS test and by the
two-dimensional KS test applied to the projections on the three coordinate planes. For samples of
n=50 data points, we have found an average probability of rejection based on the
three-dimensional test of 94 per cent, while the two-dimensional test applied on the (x, y), (x, z)
and (y, z) planes gave probabilities of 81, 87 and 85 per cent, respectively. For samples of n=100
data points, we found that the three-dimensional test rejects the hypothesis at better than 99 per
cent probability, while the two-dimensional test gives probabilities of 95, 97 and 98 per cent. We
conclude that the three-dimensional KS test is a safe procedure to testing statistical hypotheses on
three-dimensional samples.

7 Conclusions

This paper deals with a generalization of the classical Kolmogorov—Smirnov test to analyse data
points in two or three dimensions. This version of the test turns out to be faster (by a factor equal
to the size of the samples under study) with respect to an earlier version by Peacock (1983). This
allows us to thoroughly explore the test statistics, and, in particular, to fully account for its
dependence on the degree of correlation of data points and on the sample size. Then we are also
allowed to construct a more general test suitable for analysing data points in three dimensions. As
a counter-check, the test statistics are found to converge to the one- and two-dimensional cases
for highly correlated data.

We have derived for the two-dimensional case an analytic expression yielding the critical values
Z, g1 for any value of sample size, significance level and correlation coefficient, within the ranges
explored by our simulations. We suggest that this expression extrapolated to values of SL slightly
larger than those directly explored does still work.

We have used our test to analyse a particular model of cosmological evolution for the X-ray
selected active galactic nuclei and found that it sets much tighter constraints on the models than
the ° technique. On the other hand, the test turns out to be usually less efficient than the
maximum likelihood method in the parameter estimation.

We still do not have any formal proof of the generai validity of the test, but our extensive Monte
Carlo simulations make us confident in its applicability to many astrophysical problems.
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Appendix A: Relevant data on the two-dimensional KS test

We report here the relevant information required to recover quickly the critical values Z,, ¢,
needed for the application of the two-dimensional KS test. As detailed in Section 3, we have

performed Monte Carlo simulations based on parent distributions characterized by correlation
coefficients CC covering all the range from 0 to 1. Here we report in Tables A1-AS the results

Table Al. Critical values of Z, for a uniform uncorrelated distribution.

SL(%)® 30 40 5 60 70 8 9 95 99
n®  # of simul.

5 100000 883 .943 1.00 106 113 1.21 133 144 163

7 ” 894 950 101 107 114 122 135 146 1.67

10 ” 901 950 102 1.08 115 124 137 148 1.70
15 » 915 975 103 110 1.17 126 139 151 174
20 » 927 987 105 111 119 127 141 152 1.76
30 " 948 101 107 113 121 130 143 155 179
50 » 972 103 109 116 123 133 146 158 1.82
100 10000 100 106 112 119 126 136 149 162 1.85
200 5000 103 110 116 123 130 139 1.53 166 1.89
500 » 107 113 120 126 133 142 157 169 192
1000 ” 110 117 123 129 137 145 160 172 1.97
2000 1000 111 118 124 131 138 147 161 173 194
5000 500 113 119 124 131 136 145 164 171 1.89

(o) Significance level (SL=1- P(> Z,)); (®) Size of the sample

Table A2. Critical values of Z, for a uniform distribution with CC=0.6.

SL(%) 30 40 50 60 70 80 ) 95 99
n

5 .851 911 974 1.04 111 1.19 1.32 1.44 1.65
7 .868 926 986 1.05 1.12 1.20 1.34 1.44 1.65
10 .878 937 994 1.06 1.13 1.22 1.35 1.46 1.68
15 891 949 1.00 1.06 1.14 1.23 1.37 1.48 1.74
.902 958 1.01 1.09 1.16 1.26 1.39 1.51 1.73
914 978 1.04 1.10 1.17 1.26 1.40 1.52 1.78
935 997 1.06 113 1.19 1.29 1.42 1.54 1.79
100 967 1.03 1.09 1.16 1.24 1.33 1.47 1.60 1.82
200 1.00 1.06 113 1.19 1.27 1.36 1.50 1.62 1.87
500 1.04 1.10 1.16 1.23 1.30 1.39 1.53 1.63 1.89
1000 1.07 1.13 119 1.26 1.34 1.43 1.58 1.69 1.92

gE88

Table A3. Critical values of Z,, for a uniform distribution with CC=0.7.

SL(%) 30 40 50 60 70 80 ) 9% 99
n

5 .839 .892 959 1.02 1.10 1.18 1.31 1.42 1.64

7 .856 915 .970 1.03 1.10 1.19 1.32 1.43 1.67
10 .861 .920 977 1.04 1.12 1.21 1.35 1.46 1.69
15 .876 930 .990 1.05 1.12 1.22 1.35 1.48 1.69
20 .886 945 1.01 1.07 1.14 1.24 1.37 1.50 1.73
30 .898 960 1.02 1.08 1.16 1.25 1.38 1.49 1.80
50 921 976 1.04 1.11 1.18 1.27 1.39 1.53 1.77
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Table Ad4. Critical values of Z, for a uniform distribution with CC=0.8.

SL(%) 30 40 50 60 70 80 90 95 99
n

5 .825 .869 939 1.00 1.08 1.16 1.29 1.42 1.63

7 .830 .888 949 1.01 1.08 1.17 1.32 1.43 1.68
10 .842 .898 .956 1.02 1.10 1.19 1.33 1.46 1.70
15 .849 909 .966 1.03 1.10 1.19 1.32 1.44 1.66
20 .860 913 976 1.04 1.12 1.21 1.35 1.48 1.72
30 .870 931 996 1.05 1.13 1.21 1.36 1.49 1.76
50 .889 947 1.01 1.07 1.14 1.23 1.36 1.49 1.73
100 922 979 1.04 1.10 1.17 1.27 141 1.53 1.80
200 .946 1.01 1.07 1.13 1.21 1.30 1.43 1.55 1.79
500 987 1.04 1.10 1.16 1.24 1.33 1.46 1.57 1.83
1000 1.01 1.07 1.13 1.19 1.27 1.36 1.50 1.61 1.84

Table AS. Critical values of Z, for a uniform distribution with CC=0.9.

SL(%) 30 40 50 60 70 80 90 9% 99

.808 .848 .893 965 1.05 1.13 1.28 1.39 1.61
798 .859 918 977 1.04 1.14 1.30 141 1.67
.803 .859 922 .985 1.06 1.17 1.30 1.43 1.67
.816 873 .929 987 1.06 1.15 1.28 1.41 1.64
.821 .875 933 994 1.07 1.17 1.31 1.44 1.68
.829 .883 .938 1.00 1.08 1.17 131 1.43 1.69
.837 .896 953 1.01 1.09 1.18 1.31 1.42 1.68

883;540\3

Table A6. Coefficients a;;; of the polynomialfit to alldataon Z,, gy .

order of term

Qijk
0.7107
0.9853E-2
0.8561E-2
0.2800E-2
-0.5126
-0.2539
0.3745E-1
-0.3298
-0.1408E-1
-0.7693E-1
-0.6124E-1
-0.1918E-1
0.1064E-1
-0.5042E-1
0.3670E-1
0.7750E-3
0.7775
-0.2322
-0.1273
-0.9915

W NN =0 00000 O0CCOCO
O = O ON O OO WNNMKIEMEMIMOOOO S
O O OO O N OO O NMOGWNMRIO &
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corresponding to CC=0, 0.6, 0.7, 0.8, 0.9. In the limit CC— 1 the probability distribution of the
one-dimensional KS applies. We have omitted to give details for intermediate values of CC, as
they do not differ markedly from the case with CC=0. From Tables A2-AS5 the number of
simulations was 5000 for all values of n.

As anticipated in Section 3, we have fitted all our values of Z,, 5; with the following polynomial
expansion of degree m

Zn,sL= i (mEt) ('"E‘ " aguv'wk A1)
i=0 j=0 k=0

with

u=-log[(1.268—CC)/1.41}

v=log (100—SL)-2

w=5[4.989/(4.989—5)] 009418

s=log(n)+1.074.

Here SL is the percentage significance level. We have fitted the relation A1 to the data by means
of a y? technique and found that confining ourselves to a third-order expansion (m=3) gives a
good enough fit. Table A6 reports the corresponding 20 values of the matrix a;;. The above
expressions for the quantities u, v, w and s were chosen so as to make easier the optimization of
the coefficients a;;. The amplitude of the residuals of the best-fit are never larger than the
uncertainties in Z, g due to the limited number of simulations.

Appendix B: The probability distributions of the three-dimensional KS test

The application of the three-dimensional KS test requires that the statistic Z,, 3p should first be
calculated according to the prescriptions of Section 4. The second step is to determine the partial
correlation coefficients g,,, 0, and g,, of the model distribution. Finally, unless one or more of
them is higher than 0.95, one should take the average g of the three CC values and then use the
corresponding critical values of Z, ;p. These critical values are reported in Tables B1-B6 for
0=0, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively. The number of simulations carried out for each
value of n is reported in Table B1. We have omitted the intermediate values of g as they do not
differ markedly from the p=0 case.

Table B1. Critical values of Z, ;p for a uniform uncorrelated distribution in three
dimensions.

SL(%)(®) 30 40 5 60 70 8 9 95 99
n®) 4 of simul,

10 10000 992 105 110 116 122 130 142 153 175
20 » 1,02 107 113 119 126 134 147 157 1.80
50 5000 106 112 118 124 131 139 152 163 1.84
100 » 112 117 123 129 136 144 156 168 1.88
200 2000 115 121 127 133 141 148 160 171 1.88
500 1000 122 128 133 139 146 154 166 176 195

@ Significance level [SL=1-P(>Z,)].
®Size of the sample.
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Table B2. Critical values of Z, ;p for a Gaussian three-dimensional distribution
with g=0.5.
SL(%) 30 40 50 60 70 80 90 95 99
n

10 960 1.01 1.07 1.12 1.19 1.27 1.39 1.51 1.74
20 980 1.03 1.09 1.15 1.22 1.30 1.43 1.55 1.78
50 1.02 1.08 1.14 1.20 1.27 1.37 1.50 1.61 1.86
100 1.07 1.12 1.18 1.24 1.32 1.41 1.54 1.67 1.90
200 1.11 1.17 1.22 1.29 1.36 1.45 1.58 1.70 1.93
500 1.17 1.24 1.29 1.36 1.42 1.50 1.62 1.72 1.94

Table B3. Critical values of Z, ;p for a Gaussian three-dimensional distribution
with =0.6.

SL(%) 30 40 50 60 70 80 90 95 99
n

10 .940 .990 1.05 111 1.17 1.26 1.38 1.49 1.72
20 .960 1.01 1.07 1.13 1.20 1.29 1.42 1.63 1.78
50 1.00 1.06 1.12 1.18 1.25 1.34 1.47 1.58 1.83
100 1.04 1.10 1.16 1.22 1.30 1.38 1.52 1.63 1.86
200 1.09 1.15 1.20 1.26 1.33 1.42 1.56 1.66 1.91
500 1.15 1.20 1.26 1.32 1.39 1.47 1.61 1.72 1.91

Table B4. Critical values of Z, 3;p for a Gaussian three-dimensional distribution
with g=0.7.

SL(%) 30 40 50 60 70 80 90 95 99
n

10 914 .970 1.02 1.09 1.15 1.24 1.36 1.48 1.72
20 927 .985 1.04 1.10 1.17 1.26 1.39 1.51 1.76
50 .970 1.02 1.08 1.14 1.22 1.31 1.44 1.55 1.80
100 1.01 1.06 1.12 1.19 1.25 1.34 1.48 1.59 1.83
200 1.05 1.10 1.16 1.22 1.29 1.37 1.52 1.62 1.86
500 1.11 1.16 1.21 1.27 1.33 1.42 1.54 1.64 1.90

Table B5. Critical values of Z, sp for a Gaussian three-dimensional distribution
with 9=0.8.

SL(%) 30 40 50 60 70 80 90 95 99
n

10 .890 942 1.00 1.06 1.12 1.21 1.33 1.45 1.66
20 .893 .946 1.00 1.06 1.13 1.22 1.36 1.48 1.74
50 929 982 1.04 1.10 1.17 1.26 1.40 1.52 1.79
100 .960 1.01 1.07 1.13 1.20 1.29 1.43 1.56 1.83
200 990 1.05 1.16 1.23 1.32 1.32 1.46 1.59 1.83
500 1.06 1.11 1.16 1.22 1.29 1.37 1.48 1.60 1.85

Table B6. Critical values of Z,, 3p for a Gaussian three-dimensional distribution
with §=0.9.
SL(%) 30 40 50 60 70 80 20 95 29

n

10 .846 .895 .953 1.01 1.08 1.16 1.30 141 1.63
20 844 .896 947 1.01 1.08 1.17 1.31 1.44 1.70
50 .867 917 .968 1.03 1.10 1.19 1.33 1.47 1.75
100 .890 943 997 1.06 1.13 1.22 1.37 1.51 1.77
200 .926 974 1.03 1.09 1.15 1.24 1.40 1.52 1.83
500 958 1.01 1.07 1.13 1.19 1.28 141 1.53 1.84
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If, instead, one or more of the three partial correlation coefficients is =0.95, then Tables
B1-BS cannot be used to derive the critical values of Z,, ;p. In this case, however, one of the
corresponding variables can be represented as a function of the others and the three-dimensional
case degenerates to the two-dimensional (or one-dimensional) ones.
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